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ABSTRACT

For decades, drug delivery scientists have been performing trial-and-error experimentation to manually sample
parameter spaces and optimize release profiles through rational design. To enable this approach, scientists spend
much of their career learning nuanced drug-material interactions that drive system behavior. In relatively simple
systems, rational design criteria allow us to fine tune release profiles and enable efficacious therapies. However,
as materials and drugs become increasingly sophisticated and their interactions have non-linear and com-
pounding effects, the field is suffering the Curse of Dimensionality which prevents us from comprehending
complex structure-function relationships. In the past, we have embraced this complexity by implementing high-
throughput screens to increase the probability of finding ideal compositions. However, this brute force method
was inefficient and led many to abandon these fishing expeditions. Fortunately, methods in data science
including artificial intelligence / machine learning (AI/ML) are providing ideal analytical tools to model this
complex data and ascertain quantitative structure-function relationships. In this Oration, I speak to the potential
value of data science in drug delivery with particular focus on polymeric delivery systems. Here, I do not suggest
that AI/ML will simply replace mechanistic understanding of complex systems. Rather, I propose that AIl/ML
should be yet another useful tool in the lab to navigate complex parameter spaces. The recent hype around Al/
ML is breathtaking and potentially over inflated, but the value of these methods is poised to revolutionize how
we perform science. Therefore, I encourage readers to consider adopting these skills and applying data science
methods to their own problems. If done successfully, I believe we will all realize a paradigm shift in our approach
to drug delivery.

1. The rise of artificial intelligence in drug delivery

The recent publication of ChatGPT has suddenly brought the power
of artificial intelligence (AI) to mainstream attention. Experts and media
outlets are almost universally proclaiming a revolutionary future driven
by AI that will touch upon every aspect of our lives. However, many
rightfully ask if the hype will ultimately translate to the redefined future
many are predicting. Such skepticism is valid as the Gartner hype cycle
suggests that we may be within an exponential explosion of inflated
expectations that is classically followed by troughs of disillusionment
(Fig. 1). I remember observing these trends in the field of drug delivery
during my PhD in the late-2000’s when nanomedicine and gene delivery
experienced similarly inflated expectations. In hindsight, my own thesis
combining gold nanorods and polymer-drug conjugates for photo-
thermal cancer therapy seems to almost epitomize the unrealistic ex-
pectations we placed on these technologies to transform medicine.
Fortunately, the field experienced a dramatic renaissance of
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enlightenment when mRNA lipid nanoparticle (LNP) vaccines drove
immunity through the COVID-19 pandemic.

This history leads us to an important question about the current
exponential rise of Al and its short- and long-term impact on drug de-
livery. While many scientists with long careers in drug delivery may
view this as just another hype cycle, I see a much more durable future for
this emerging technology. This optimism stems from my own experience
using these tools to solve research problems. I do not have a training
background in data science and only started playing with these tools
when my lab started drowning in complex data following years of
automation and high-throughput process development. My department
chair suggested I try machine learning (ML) to deconstruct the data, but
I was initially skeptical due to the hype around Al even in 2019. How-
ever, I will never forget the day my student trained our first model and
observed its powerful ability to model complex material behavior.
Subsequent studies in collaboration with Michael Webb at Princeton
University correlating polymer designs to protein stabilizing behavior
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revealed the true potential of Al in the fields of drug delivery and bio-
materials science. From these experiences, I became convinced that the
future was bright for Al in materials science.

Utilization of big data is already revolutionizing how we develop and
interact with smart technologies. While massive data sets may appear
noisy, a deeper dive into this nuanced information can extract remark-
able value. Indeed, the devices we interact with now depend on this
repository of information to make predictions and increase our browsing
productivity. Clearly, these techniques were developed with electronic
devices in mind, but it is widely expected that big data may also be
useful to a wider variety of disciplines. For example, the problem of
predicating protein folding from an amino acid sequence has long been
considered a grand challenge in structural biology. With this in mind, a
biennial competition called Critical Assessment of Protein Structure
Prediction (CASP) was launched in 1994 to encourage efforts around the
protein folding problem [1]. The challenging nature of this exciting and
impactful concept attracted many to participate including DeepMind, a
UK based Al company now part of Alphabet Inc. Their team developed a
neural network model named AlphaFold which was trained on known
protein structures in the protein data bank (PDB). With this model,
DeepMind participated in the 14th CASP competition and achieved
remarkably accurate predictions within error of experiments [2]. As a
result, many are claiming that the protein folding problem has been
solved nearly 50 years after it was first introduced by Nobel Laureate
Christian Anfinsen in 1972. Enter scene: intrinsically disordered
proteins.

Proteins are polymers whose primary sequence ultimately de-
termines their structure and therefore function. Materials chemistry, like
biology, has grown a great appreciation for the available diversity in
polymer designs. By simply substituting minor changes in monomer
sequence and chemistry, we can attain new materials with remarkably
unique characteristics. Over the last 50 years, we have leveraged these
highly tailorable properties to create high performance materials for
drug delivery. While polymer diversity enables complexity for biology
and materials science, it also presents overarching challenges. Biology
patiently addressed this issue by evolving new designs over billions of
years. Chemists and engineers, on the other hand, are not that patient.
Instead, we spend years at school training in polymer science followed
by decades in industry or academia to perfect our rationally designed
new materials. As a result, our most accomplished polymer scientists are
also the ones with the most experience. In effect, they were trained
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through experience to be excellent at their craft.

Like experts, computational models can also be trained to accom-
plish difficult tasks. We have seen this done at the 2020 CASP14
competition, and no doubt will see this in synthetic polymer chemistry
and drug delivery. However, we do not yet have a repository of infor-
mation from which we can trained advanced models. As we will discuss
in the proceeding sections, new advances in high-throughput automa-
tion when combined with ML may provide the needed opportunity to
adequately explore vast and fruitful structure-function landscapes in
drug delivery.

2. Machine learning introduction

Al and ML are terms that are often used interchangeably and are in
fact closely related. Al is a broad concept for using a machine to mimic
the cognitive functions of human intelligence. Meanwhile, ML specif-
ically refers to models that are trained on data to predict system
behavior and inform decision making. Therefore, Al is the overarching
term that includes major subfields such as ML and natural language
processing. Because it is accurate to refer to either AI or ML in most data
science applications, my habit is to simply combine the terms into Al/
ML which I will use for the remainder of this article.

The power of AI/ML to model and predict complex relationships in
seemingly disorganized data provides fundamental value to all fields of
science and engineering. As intelligent organisms, we take for granted
how past experiences (i.e., data) have trained our cognitive ability to
detect patterns and make decisions. In science, we also collect data and
use that data to make predictions with degrees of certainty. This sta-
tistical analysis is taught at a very early age in our education where
simple tools such as linear regression provide our first exposure to Al/
ML. Therefore, most people have been using AI/ML to understand data
without even knowing it! Linear regression is of course the simplest
example of AI/ML where more complex functions quickly develop
polynomial expressions. The challenge, however, is that variable de-
pendencies are difficult to rationalize the moment functions develop
non-linear behavior. Exponential, quadratic, and sinusoidal relation-
ships can have simple dependencies, but may require careful study to
correlate these relationships in a rational way. Therefore, most scientists
develop and apply simple models to quantitatively represent informa-
tion with degrees of confidence for hypothesis testing. Unfortunately,
while these modeling exercises are appropriate and usually accurate, it
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Fig. 1. Gartner hype cycle. Dramatic innovations often follow a characteristic cycle of inflated expectations followed by troughs of disillusionment. Indeed, the field
of nanomedicine and gene delivery experienced this cycle until the mRNA lipid nanoparticle vaccines demonstrated the true potential of these technologies. Now, we
may be experiencing a similar cycle in artificial intelligence / machine learning (AI/ML). However, I do not think the depth of the trough will be quite so pronounced
and I imagine near boundless potential for Al/ML in drug delivery in the long-term.
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is not always true that this furthers our general understanding of com-
plex structure-function relationships.

The problem of understanding complex structure-function relation-
ships is further compounded the moment we add multiple interacting
variables. Students early in their training often make the mistake of
testing too many conditions at once without appropriate controls and
then face complex data without obvious dependencies. The truth is that
dependencies do exist, we just have a hard time deconstructing data
with high dimensionality. Therefore, it is better to perform multiple
small experiments that learn from each other rather than perform one
large experiment where all conditions are tested at once. If you are
lucky, simple linear relationships exist between one dependent and one
independent variable. Unfortunately, structure-function relationships
are rarely that simple and subtle material properties can compound to
create very complex behavior. In data science, we call this the Curse of
Dimensionality.

The Curse of Dimensionality is particularly apparent in the field of
drug delivery where many parameters can have subtle and compound-
ing effects on drug-material interactions. In one excellent example
highlighted by Axelsson et al., delivery systems made from poly(D,L-
lactic-co-glycolic acid) (PLGA) are very common and well-studied, but
suffer from many interacting parameters that complicate the design
process (Fig. 2) [3]. For example, many polymer-drug material systems
are characterized in a solid state to understand drug-material misci-
bility, drug crystallization, porosity, and more. However, the moment
these systems contact water and begin to swell and hydrolyze, a cascade
of interactions may dramatically change the physicochemical properties
of the drug delivery system which impacts release rate. Given the
complexity of these compounding interactions and the challenge asso-
ciated with mapping structure-to-function as a function of time, it is no
wonder that many drug delivery scientists often rely on high-throughput
screening or design of experiment methods to sample parameter spaces.
Unfortunately, random sampling is very inefficient and may miss key
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interactions that drive behavior.

Non-linear structure-function relationships with high dimensionality
are best understood by AI/ML. Here, complex models are trained on
known data to make accurate predictions on unseen data. If done suc-
cessfully, AI/ML models can generalize even if these relationships are
too complicated for humans to fully comprehend. Therefore, we do not
need to rationally understand complex structure-function relationships,
we just need to develop highly accurate AI/ML models to inform future
designs. Neural networks, for example, are particularly configured to
model problems with very high dimensionality. This power stems from
their bioinspired approach to replicate our own neural connectivity
which allows us to quickly weigh several competing information inputs
and make approximations to inform decision making. This is why many
image processing models use deep learning algorithms to generalize.
However, it is likely that problems in drug delivery are not so complex
that we require deep learning methods. Often, very simple supervised
models such as random forests are enough to adequately model system
behavior.

3. Data quantity, quality, and source

A common misconception is that AI/ML requires substantial data to
be accurate. As a data science, it is of course true that larger quantities of
data will generally produce more accurate models. However, drug de-
livery scientists should not be overwhelmed by the amount of data that
is common in other disciplines. The reality is that our physical experi-
ments are unlikely to scale to such an extent. However, that does not
mean that AI/ML tools are not useful to the physical sciences. Quite the
opposite. Learning with less is an exciting topic in data science where
multiple methods may provide valuable insight from small amounts of
data. Also, methods for extracting and using existing data to feed models
is an exciting area of investigation.

Data mining represents one way of collecting enough useful data to
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Fig. 2. Curse of Dimensionality in drug delivery. Often, many interacting and compounding variables challenge the design problem. In this example, PLGA
microparticle systems suffer the Curse of Dimensionality despite their simplified properties. Recreated with permission from Elsevier using BioRender.com [3].
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train models and inform future designs. It acknowledges that decades of
publicly available experiments and data are available in the literature
and that these investments should not be wasted. For example, Christine
Allen et al. at the University of Toronto used the COVID-19 pandemic
and time at home to collect an impressive dataset for self-emulsifying
drug delivery systems and long-acting injectables from existing publi-
cations [4]. As a result, they were able to train an AI/ML model on this
data with high predictive capabilities [5]. However, the challenge they
ran into which is true for most data mining missions is the completeness
of the dataset and individual ways scientists represent information. For
example, they found that many studies did not provide comprehensive
documentation about their materials such as polymer structure, chem-
istry, molecular weight, and dispersity. In some instances, material
source was not provided which prevents data miners from finding
associated information on their own. Also, the representation of results
is not standardized which means that the same information can be
presented in very different ways. For example, some studies may use %
cumulative release or % remaining, while others may use mass (ex., jig
or pg/mL). These inconsistencies and the process of finding the right
studies in the first place make the process of manual data mining labo-
rious and unreliable. To combat this issue, others are developing algo-
rithms for the automated sourcing of data from the literature. Here,
keywords are used to find relevant papers and downloaded into a
database. Then, these pdfs are scraped for data using image recognition
to identify relevant graphs, interpret the information, and synthesize
these results into consistent tabular data. No doubt, these automated
methods for data mining are challenging and an area of immense op-
portunity to use existing information.

The problem of data inconsistency is not just a problem for the
mining of data from older publications, but a problem that continues to
persist. To address this challenge, members of the materials genome
initiative (MGI) and beyond are highlighting the need for all in-
vestigators to publish data using FAIR (findable, accessible, interoper-
able, and reproducible) practices. Some journals, particularly those that
publish papers with data science, now require that all raw data be
provided either in the supporting information, or on publicly available
databases such as GitHub. Examples of other material databases include
the Materials Data Facility (MDF), Community Resource for Innovation
in Polymer Technology (CRIPT), Polymer Genome, Polymer Property
Predictor and Database, caNanoLab, and others [6]. For a discussion on
this topic as it relates to nanomedicines, see this excellent review by
Daniel Heller at Memorial Sloan Kettering Cancer Center [7]. In some of
our own recent work, data has been provided as downloadable data
frames which are easily accessed using a few lines of code [8,9]. The
challenge is enforcement where generations of investigators are not used
to organizing raw data for public disclosure. Some funding agencies are
considering mandating these practices, but this requirement is not likely
in the near future.

Further complicating this problem are the materials and methods
used to create drug delivery technologies. Polymers are the most com-
mon material to package drugs and modulate release, but their heter-
ogenous characteristics and limited methods for accurate
characterization challenge feature representation. In contrast, Alpha-
Fold was incredibly successful at training an AI/ML model on protein
structure-function behavior because a well described repository of in-
formation was available in the PDB. Here, each protein sequence is
easily represented using a variety of methods with their corresponding
structure by x-ray crystallography. From this information, features that
describe their structure are relatively straightforward to engineer. Un-
fortunately, synthetic polymers neither have such a comprehensive
database nor are there obvious methods for universal representation. To
tackle this problem, investigators such as Brad Olsen are creating stan-
dards for polymer representation and characterization. This includes
BigSMILES, which adopts string representation of small molecules to
macromolecules [10]. His lab also created PolyDat, which provides
useful guidance on best practices for preparing and publishing polymer
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characterization data and allows for apples-to-applies comparisons [11].
Finally, he recently created CRIPT, which provides a database for these
materials and their chemistries [12]. As the field of drug delivery relies
heavily on synthetic polymer materials, our community needs to adopt
these standardized methods so that data mining of new publications is
straightforward. Also, the field of drug delivery itself needs to organize
their own methods for data representation so that standard protocols are
created and followed. This will likely include standard ways of repre-
senting drug release profiles and providing this data using FAIR prac-
tices. Only then will the drug delivery community maximize all new data
for data mining opportunities.

In most cases, the challenge of data availability is simply solved by
performing new experiments (Fig. 3). However, to effectively use Al/
ML, it will be important to design experiments that produce more data
than traditional. In this context, convenient labware such as well plates
provide the best option to enable high-throughput and combinatorial
experimentation. Fortunately, many drug delivery scientists already use
these experimental formats to minimize sample volume. Also, the field
of drug delivery has developed these workflows over the last few de-
cades to enable high-throughput screening experiments. These large
screens solve the Curse of Dimensionality by brute force sampling and
are easily reengineered to enable data science. For example, typical drug
formulations labs at major pharmaceutical companies will employ a
suite of liquid handling robotics and high-throughput assays to quickly
generate and assess large libraries of drug-material combinations. In
response, suppliers of analytical instrumentation are increasingly rede-
signing instruments to perform analyses in well plates and provide the
raw data in downloaded formats. This trend is exciting and will greatly
enable AI/ML in the physical and life sciences. However, it is important
to note that the previously described challenges of data representation
persist even in labs that collect their own data. Even companies that do
not intend to make their data publicly available should still adopt FAIR
practices for data handling to further enable and accelerate internal
projects. Many companies such as Meta, Google, Apple, and others have
built strong business models based on the collection and storage of
useful data, and it is likely that diligent housekeeping of physical science
data will provide competitive advantages as industries increasingly rely
on AI/ML to accelerate discovery science.

4. Explainable AI to inform designs

It is exciting that so many people are embracing AI/ML tools such as
ChatGPT. However, a healthy dose of skepticism is required when
gaining information from AI/ML as these models are generalizing from
disparate data. Just like human intelligence, AI/ML is fallible. Part of the
problem is that many AI/ML models are black boxes which means that
we are unable to track down source information and validate the ac-
curacy of the results. Indeed, regular users of ChatGPT will routinely
identify mistakes and hopefully put this information in context. Those
that do not exercise this practice are at risk of digesting misinformation.
While this problem poses great societal risk, it also poses a problem with
using AI/ML to inform the design of drug delivery technologies. As
scientists and engineers, we are trained to carefully plan experiments to
elucidate structure-function behavior and establish design criteria. For
this reason, high-throughput screens have always been appropriately
characterized as fishing expeditions that do little to reveal mechanisms.
As a result, high-throughput screens that became popularized in the
1990’s and 2000’s were gradually phased out for more traditional
experimentation and computation that do reveal mechanisms of action.
Now, with the sudden rise and embrace of AI/ML, we are at risk of
repeating history.

Fortunately, not all AI/ML models are black boxes and some are
highly interpretable. Often called Explainable Al, a variety of methods
are being developed to specifically probe existing models and decon-
struct how features are collaborating to drive system behavior. One
popular example is Shapley Additive Explanation Values or SHAP which
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Fig. 3. Machine learning on physical experiments in drug delivery. Methods for data curation, feature engineering, and model training drive the discovery process

and enable structure-function modeling.

uses game theory to individually test the importance of features [13].
From this information, feature importance maps are generated including
radar plots that weight their contributions. This information is very
valuable and can help provide mechanistic insight. Also, quantitative
structure-function maps can be generated from this information to
provide detailed understandings. Often, these maps are far too complex
for any human to manually generate and rationally comprehend using
traditional approaches. Therefore, Explainable Al provides the right set
of tools to alleviate concerns that AI/ML has the same pitfalls associated
with high-throughput screens. However, since not all Al/ML models are
currently interpretable including most deep learning methods, it is
important to judiciously select and test models that do provide options
for later interpretation. For more information, see our User’s Guide to
Machine Learning [9].

While Explainable AI methods provide excellent tools to unravel the
Curse of Dimensionality, they do not substitute traditional experiments
to determine mechanism of action. In our recent study using AI/ML to
design protein-specific polymer excipients, we used SHAP analysis to
probe feature importance [8]. The results were very interesting and
confirmed our hypothesis that each protein requires a specialized set of
polymer material properties to achieve thermal stability above their
melting temperature. However, those analyses do not reveal the mech-
anism of action. Therefore, we used a combination of small-angle x-ray
scattering (SAXS), dynamic light scattering (DLS), circular dichroism
(CD) spectroscopy, and quartz crystal microbalance (QCM) to probe
protein-polymer interactions [14]. Through these careful studies, we
learned that our original hypothesis was incorrect and that an unex-
pected mechanism of interaction was responsible for protein
stabilization.

This example simply illustrates the need to still perform mechanistic
studies despite the powerful outputs of these new tools. It is risky to
abandon traditional characterizations as was seen during the movement
towards high-throughput screening. Even with very advanced physics-
informed learning, supervised AI/ML models do not accomplish
rational design. They are only intended to optimize defined properties.
How the AI/ML model came to a solution is only revealed through
traditional mechanistic studies.
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5. Autonomous explorations via self-driving labs

The connection between AI/ML and automation is obvious given the
requirement for data with sufficient quantity and quality. As discussed
earlier, high-throughput screening with the help of automation has been
widely embraced in the drug delivery community for decades. Hope-
fully, these high-throughput experiments will be complemented with
AI/ML to utilize the value of all collected data as recently done by Daniel
Reker et al. now at Duke University [15]. Looking to the future, how-
ever, draws further excitement about the potential of connecting AI/ML
and automation. Humans learn by continuously experimenting within
their physical world to establish best practices and make decisions.
Meanwhile, traditional AI/ML collects a large amount of data, trains a
model, then uses this model to make predictions and decisions. In many
ways, traditional AI/ML methods do not learn over time like humans do.
Therefore, to make AI/ML more intelligent and better at characterizing
material systems, it is better to use active learning.

Active learning (also known as ‘selective sampling’) utilizes a closed-
loop Design-Build-Test-Learn cycle of experimentation to iteratively
improve AI/ML models with new data and inform next experiments
(Fig. 4) [16]. Just like human-based learning, it provides an improvable
model with feedback to guide decision making. Typically, it will use
Bayesian optimization to strategically map a design space by scoring the
potential value of many new experiments. This acquisition function is
central to active learning’s ability to efficiently map structure-function
relationships with the fewest possible experiments [17]. Essentially, it
is a statistical tool to design new experiments and maximize learning
towards a specific outcome or set of outcomes in data scarce projects.
Most importantly, active learning provides a framework for AI/ML
guided decision-making and autonomous exploration of structure-
function relationships.

To maximize the value and efficiency of active learning, the Build-
Test portion of the workflow should be done using reliable assays with
high-throughput automation. This provides the essential data quality
and quantity to feed these models. As we have done in previous work,
the Build-Test portion of the workflow can be performed with automa-
tion while the Learn-Design is performed offline by a human at their
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Fig. 4. Design-Build-Test-Learn for autonomous workflows. Through the strategic integration of automation, high-throughput characterization, model training, and
Bayesian optimization, active learning enables iterative experimentation and efficient learning of complex relationships.

personal computer between each cycle. Then, new designs are uploaded
to the automation for the next round of experimentation. However, the
seamless integration of each portion of the Design-Build-Test-Learn
workflow lends itself towards the design of a self-driving lab (SDL)
[18-20]. Here, automation still performs the experiments while the
Learn-Design steps are done automatically by the computer. Then, new
instrumentation commands are sent to the automation to restart the
workflow. While the required automation has been used for decades,
autonomy for SDLs is much more difficult [21]. When achieved, systems
can be programmed to autonomously attempt design optimization
campaigns with unparalleled efficiency while leaving the scientist with
more time to read, ask questions, and innovate. Drug delivery SDLs can
also alleviate the laboratory burden of release profile timepoint sam-
pling which is often not conducive to a reasonable work schedule (i.e.,
12-h timepoints). Indeed, there is a very bright future for SDLs in drug
delivery and more broadly across all disciplines. Some even believe in a
Nobel Turing Challenge where a highly autonomous SDL can accomplish
excellent science and win a Nobel Prize for its discoveries [22,23]. For
more information about the future of SDLs in drug delivery, see two
perspectives written by myself and Christine Allen [24,25].

6. How to get started

It is not uncommon for trainees to ask how I learned AI/ML. Afterall,
I did not have any data science training prior to 2019. While younger
generations are hungry to try these tools, many lack the computer sci-
ence background to apply AI/ML to their own problems. Perhaps the
main answer is obvious; find an AI/ML expert and collaborate. This was
our approach when getting started and have worked with Michael
Webb’s lab at Princeton University for the last several years. Their
specialized expertise in AI/ML and feature engineering has been
invaluable to many of our collaborative projects. In the meantime, our
lab began to learn AI/ML on our own. To do this, the whole lab enrolled
in data science courses at DataCamp (www.datacamp.com) and spent an
entire summer learning to program in Python and train models. We
enjoyed their interface because coursework outcomes generate XP
points that we turned into a lab competition. Ultimately, this was a fun

28

exercise that resulted in organized learning of new topics. Because of
this, as well as my mandate that all data is graphed in Python, all lab
members have experience in programming and AI/ML which greatly
improves their job marketability. DataCamp is a paid resource, however,
other free/open-source options exist including LearnPython (www.
learnpython.org) and CodeCademy (www.codecademy.com), among
others. Online course repositories such as Udemy (www.udemy.com)
and Coursera (www.coursera.org) also have units on Python and AI/ML.

To complement these learning tools, my lab recently published A
User’s Guide to Machine Learning for Polymeric Biomaterials [9]. Here, we
describe many important concepts in AI/ML to a community with little
exposure to data science in programming. Our intention with this user’s
guide is to help bridge the current divide in skills and enable biomaterial
and drug delivery scientists to adopt and apply these tools. In the Sup-
porting Information, we have provided a comprehensive list of defini-
tions for reference. Most importantly, we have provided example syntax
within the publication and a Google Colab notebook so that readers can
learn by example rather than theory alone. In the Colab notebook, we
provided significant commentary to guide readers through each step
from exploratory data analysis through explainable AI. Readers are
welcome to make a copy of this notebook and import their own data to
begin playing with Python and data science.

The automation of experiments is yet another technical skill that may
feel prohibitive. Fortunately, many new and affordable instruments are
being sold with Python application programming interfaces (API). For
example, some liquid handlers like those by Opentrons can be obtained
for less than $20,000 with a Python API for customized programming
and remote control. The same is also true for many syringe pumps.
Unfortunately, APIs are not standardized, and some older equipment use
outdated RS232 serial interfaces to enable remote control. Other in-
strument suppliers do not offer open access which greatly limits their
ability to be easily integrated. This topic was recently discussed at a
Future Labs workshop at NC State where a call to action for industry to
standardize APIs was discussed. Unfortunately, it is very unlikely that
such standardization will be achieved soon. Therefore, automation en-
gineers may be required for some labs looking to develop sophisticated
SDLs. However, not all workflows require comprehensive remote
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control, and some simple systems provide excellent platforms for users
to get started with automation.

7. Perspectives on the future

As Richard Feynman used to say, it is fun to imagine. Personally, my
imagination was set fire by Richard Jones through his book ‘Soft Ma-
chines: Nanotechnology and Life’ [26]. Here, I realized that biology has
taken a fascinating materials science approach to ‘machinery’ that we
should be able to replicate. Obviously, we have been making proteins
recombinantly for decades, but that is not what I am talking about.
Instead, I am referring to mimicking biology’s machinery of proteins
using synthetic materials without a DNA/RNA template or ribosomes.
However, even if we did have sequence-level control of synthetic poly-
mers, the structure-function landscape would be too impossibly large to
navigate one experiment at a time. Biology solves this challenge using
natural selection to guide material evolution through high dimensional
parameter spaces in very high throughput. No doubt, we need to do the
same. If possible, we will have the opportunity to design sophisticated
nanomedicines or larger assemblies that may proactively repair or
replace damaged tissue. Such imaginations have long been the focus of
science fiction, but I do believe are possible if we sufficiently embrace
Al/ML-guided automation to evolve nanomaterial designs. To quote
Richard Feynman again, there is plenty of room at the bottom.

In the shorter term, I believe it is inevitable that AI/ML will become
as common a tool as the HPLC. It is easy to disagree with this opinion,
particularly those who remain skeptical by the hype. However, most
people are already using AI/ML in their daily lives without realizing it.
Type something into a search algorithm, and you have likely used Al/ML
to find relevant content. Therefore, some seamless implementations of
AI/ML in drug delivery may eventually be automatic.

The key to enabling AI/ML in drug delivery is data. Here, data can
either come from experiments performed in house or from a database
populated by the drug delivery community. As discussed earlier, the
high-throughput generation of data is something the drug delivery
community already has experience with. Therefore, the best approach is
to simply apply AI/ML analyses to existing high-throughput screens.
Moving forward, as individual labs gain experience, experimental
workflows will naturally evolve to better feed these models and even-
tually embrace active learning to inform individual design campaigns.
Meanwhile, the drug delivery community needs to plan for the longer-
term and develop repositories of broad data such as caNanoLab that
will allow us to mine information for specific projects and create Al/ML
models with high generalizability like ChatGPT [7]. The creation of such
a database was tried recently by Christine Allen at the University of
Toronto whose results point to a bright future for collated datasets [4].
Furthermore, the community needs a dedicated focus on the appropriate
feature engineering of our modeled systems. For many problems, simple
descriptors representing the presence or absence of certain elements
along a continuum via one-hot encoding may suffice. However, such
approaches do not allow for physics-informed learning and reduce the
generalizability of these models. Therefore, domain-specific descriptors,
molecular fingerprints, and string- or graph-based descriptors are
generally more appropriate. The menu of options is very large, which
poses both a problem and opportunity for the standardization of data
and how we represent this data to Al/ML models. For more information,
see a recent perspective by Frank Gu et al. on this subject [27].

The discussed challenges are not meant to overwhelm, but rather
point to tremendous opportunity and room for research and develop-
ment. [ started this Oration describing my opinion that the hype around
AI/ML should be taken seriously and not disregarded as just another
Gartner hype cycle. Yes, it is inevitable that some degree of sobriety will
occur once the craze around AI/ML has burned out. However, I do not
think that the depth of the trough of disillusionment will be as deep as
that experienced with nanomedicine and gene delivery. We did see a
spectacular conclusion to that story with the mRNA LNPs for COVID-19,
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and I expect that AI/ML will also experience a similarly productive
resting place. Meanwhile, there is some concern that these tools will
begin to replace a segment of the STEM workforce, where automation
has notoriously displaced jobs since the industrial revolution. Let’s
remember, however, that scientists are trained and employed to think,
design, and solve problems, not just to do lab work. If we can outsource
much of this physical work as well as the very complex challenge of
correlating structure-function behavior, we will be allowed more time to
perform the very human task of creative design.

We are experiencing a renaissance moment in science and technol-
ogy towards AI/ML and data science. In fact, many now predict that we
have entered a new paradigm of data-intensive scientific discovery [28].
To prepare our community, we need to focus on training and education
as these computational tools may intimidate those with experimental
backgrounds. However, science evolves, and good scientists and edu-
cators evolve with it. To do my part, my lab plans to continue publishing
similarly themed User’s Guides to support our community [9]. Professors
and educators also need to keep up with their students who are already
using AI/ML tools such as ChatGPT for their education and assignments.
We also need to establish FAIR practices for standardized data handling,
publishing, and representation. If we can achieve these ambitious goals,
the field of drug delivery will be ready for tremendous gains in pro-
ductivity. Therefore, I encourage readers to try these tools and test their
functional utility, being of course mindful that all techniques have pit-
falls and weaknesses. Do what you do best: experiment.
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